2ちゃんねる スマホ用 ■掲示板に戻る■ 全部 1- 最新50    

軸受はどこだ

1 :名無しさん@3周年:2010/09/23(木) 21:39:40 ID:W2MRsd5C.net
軸受はどこだ!
 軸受は資源になるのか。

341 :名無しさん@3周年:2015/03/02(月) 17:09:08.55 ID:SOgE/8iZ.net
Lundberg−Palmgrenの原論文はきわめて難解である上に,式の誘導にも省略が多く,
したがってこれを追跡するには多くの労力と時間とを必要とし,またその理由で内容をすべて
理解することは困難であり,とくに初心者がこの問題に入ることは至難といってもよいほどである。
そのために一般的にはやむを得ず結論のみを使用していたのが実情と言っても過言ではないと考えられる。
従来,この論文に関する解説としては,1955年に佐々木・小林が,この2論文とそれに関連する
論文とを総合化して発表したものがあるが,やはり難解であることは否めず,また石井によるものも
あるが,これは論文全般にわたっているものではない。

本書はLundberg−Palmgrenの上記2論文を,その内容の流れに沿ってできる限り
人念に追跡し,記号もそのままを使い,あわせて説明不足あるいは省略の部分を補足したものである。
そのための基本的な考え方は“もし自分が原論文の著者であって十分な紙面と時間が与えられたら,
この論文をはじめて勉強しようとする人のためどのように書くか”ということである。
したがって文章には各所に重複があってもよいとしてある。また理解のための追加部分も大幅にあるが,
原論文の思考の過程はそのまま残した。またその意味で2論文を別にしたまま発表年順に示すようにし,
さらに用語もなるべく原論文のままとしたので,例えば現在使われている“基本動定格荷重”も
元のまま“基本負荷容量”としてある。このような理由で,本書の内容を述べているのは
Lundberg−Plmgrenであるように表現し,著者の意見は脚注に示すようにした。

342 :名無しさん@3周年:2015/03/02(月) 17:09:57.41 ID:SOgE/8iZ.net
近年の電子計算機の急速な発達にともない,複雑な計算も容易に行えるようになったので,
本書の計算はすべて再計算を行ってあり,とくに表の中の数値は原論文よりも1桁多い数値を
示すようにした。また本書のうちの引用文献は,原論文出版以後のものもあるが,これは内容の理解が
容易であると考えたために引用したものである。

本書の内容のうち,Tの第1章の応力に関する計算は,神奈川大学講師の佐藤昌夫氏によるものである。
またNTN東洋べアリング叶ホ井章夫氏の諸論文については引用,参照,比較検討の資料として
至る所に使用させていただいたが,その部分が多くて枚挙できないため,ここで御礼申し上げる。

なお,このようなころがり軸受理論に関係するきっかけと多くの指導をいただいた東京大学名誉教授
曽田範宗博士,神奈川大学(故)内海龍夫教授,東海大学 青木三策教授に感謝申し上げる。
また著者の以前の在職中に協力を得た工業技術院機械技術研究所機械部機械要素課(故)藤原孝誌課長
ならびに同課軸受研究グループの諸氏に感謝の意を表する。
本書の出版にあたっては財団法人 高橋産業経済研究財団よりご援助とご激励をいただき,
また千葉大学工学部 篠崎辰夫(当時)事務長より好意あふれるご助力をいただいた。
記して深く感謝する次第である。

昭和63年9月

岡本 純三

343 :名無しさん@3周年:2015/03/02(月) 23:12:59.04 ID:ysZnEsnF.net
T.ころがり軸受の動的負荷容量

ま え が き

ころがり軸受の動的な負荷容量の計算は,従来は実験式にたよってきた。
しかしこれらの実験式は,その基礎となる実験の範囲が限られているから,
一般化をするには問題があり,また近似的なものであるとも考えなければ
ならないものである。ただしこの実験式は一般的に適用してもかなり良い
結果をおさめてきた。
しかしながら,これまでにきわめて多くの軸受が運転され,またその中で
数多くの軸受に疲れ破損がおきてきたが,軸受の内部設計のどの部分が
どのように寿命ないしは計算式に影響するかということについては
まだわかっていないし,実験的にもはっきりしていない。
従来,ころがり軸受の動的負荷容量に関する理論的研究は試みられてきているが,
それには実験によって得られる定数や指数を与えてやる必要がある。
しかしこれは実験結果が少なかったためうまくいかなかった。また2物体の
接触の理論であるHertz理論から計算した理論的結果と,実験の結果とを
うまく結び付けることもできなかった。

344 :名無しさん@3周年:2015/03/02(月) 23:13:45.34 ID:ysZnEsnF.net
ここでHertzの理論について考えてみると,この理論は2物体の接触問題を
扱っているが,これは接触状態として静的な接触を扱ったものであって,
一つの物体が相手物体に対してころがるといったことを考えていたものではなく,
したがって材料を破壊させるようなもっとも危険な応力とその変動について
考えられたものでもないのである。そのうえ接触においては単純な応力ではなく
複合された応力が加わり,またころがりがあると応力が変動するが,このような
応力状態のもとで材料がどのような挙動をとるかは誰もわかっていないし,
更に残留応力や接触面内の潤滑剤の影響についてもまだよくわかっていない。
さらにまた軌道輪がしまりばめで取付けられた時に生じる軌道面の引張応力や
圧縮応力が,接触応力にどのような影響を与えるかについても明らかではない。
Hertzの理論は,その前提として接触面の面積が接触する物体に比べて小さく,
また接触面の中では摩擦がないとしている。しかしながら玉軸受では玉と軌道との
曲率半径が近いために接触面は大きく,また摩擦も存在するので,このような前提は
成立しないことになり,したがってHertzの理論は近似的なものとしてだけ
使えるということになる。また線接触の場合には,もし片当りが生じたならば
接触理論は適用できなくなるものである。

さらに材料強度の点から言えば,古典的な材料学は,Hertz理論も含めて,
材料の強さが材料内のどの部分でも等しいと仮定している。しかしこれだと
強い応力集中があったときに,その材料の強さについて十分な説明をすることが
困難なことがある。実際の材料においては,ある微小体積の部分の強さと,
別の位置の微小体積の部分の強さとは異なるものであり,このためWeibullが
示しているように,材料の中で応力を受ける体積が変わると,その中に入る
微小体積のうちもっとも弱いものの強さが大きい場合や小さい場合が出るので,
その結果として材料の強さが変ることになる。しかしながら材料の強さに影響を
与えるようなこのほかの因子についても,それらを明確に示すのは困難であり,
したがって理論と実際とを一致させることを期待することはこれまでにはできなかった。

345 :名無しさん@3周年:2015/03/02(月) 23:14:41.46 ID:ysZnEsnF.net
本論文はこの問題を解決するため,ころがり軸受の動的負荷容量に関する
統一的な基礎理論を示したものである。この理論は本文中の式を基礎として
発展させたものであるが,この式は寿命のばらつきを考慮に人れた統計式である。
これから寿命と負荷容量の計算式を誘導したが,それらの式の中の定数や指数の値は
寿命試験の結果を使い,寿命のばらつき,寿命に対する荷重の影響,
動的負荷容量に対する軸受寸法の効果などから決定した。
また動的負荷容量に対する転動体と軌道面の曲率比の影響については,接触状態が
上に述べたようにHertz理論の限界を超えたところにあるが,Hertz理論を
拡張して適用し,また材料内でころがり方向に平行な面内でのせん断応力の振幅も
計算した。疲れクラックは最初にこの面内で発生するという事実があるから,
ここで考える疲れ強さの理論はこの応力とその振幅についてだけ考えればよい。
しかしこの問題については今後さらに研究を続ける必要があろう。

この論文で誘導した理論式に対して,実験によって得られた指数を入れることによって
寿命理論が確立し,計算と実際とがよく一致するようになった。
なおこのような寿命に関する実験はさらに続けられ,発展させられることが必要であるが,
その際に注意すべきことは,寿命理論を研究するための寿命試験の際には,
同一材料から作った軸受で,できる限り同じ製造工程,同じ精度で作られている
軸受グループを使うようにしなければならないことである。

なお,この論文で求めた寿命計算式に入る指数と係数は,実験により求めたものであるから,
強さの異なる材料を使えば当然変化するものである。したがってこれらの値については
たえず実験を繰返し,その値を常に把握していることが望まれるものである。

346 :名無しさん@3周年:2015/03/02(月) 23:15:48.08 ID:ysZnEsnF.net
本論文の内容は次の通りである。

1.ころがり接触により生じるせん断応力とその振幅
2.疲れ問題の統計的取扱い
3.ころがり軸受の寿命計算式
4.寿命計算式における指数の決定
5.転動体に加わる荷重
6.基本負荷容量の計算
7.軸受の等価荷重の計算
8.軸受を組合わせたときの寿命

なお,この研究にあたってBertil Anderson氏に大きな援助をいただいた。

G.Lundberg
A.Palmgen

347 :名無しさん@3周年:2015/03/03(火) 06:21:42.19 ID:ZJdXeyCB.net
U.ころ軸受の動的負荷容量

ま え が き

前報「ころがり軸受の動的負荷容量」 (1947)は,ころがり軸受に関して
当時までに得られた知識をもととして,新しい理論を示したものである。
そしてそれ以後の研究は主としてころ軸受を対象にして行った。
本報はころ軸受についての結果から,前報を修正したものである。

線接触においては,接触面が長方形となるためには軸方向の圧力が一様であることが
必要であることは当然である。このような状態は無限長さの2円筒が接触すれば
達成することができる。このときの変形は二次元変形の条件となり,すべての荷重において
長方形接触面が得られる。しかしながら実際に接触する物体の長さは有限であり,
また2個の物体の長さが等しくないことの方が多い。したがって変形は三次元的になり,
このような場合にはHertzの接触理論は適用できない。
2物体が荷重0のときに幾何学的な意味での「線」で接触するような形状のものは,
荷重が加わった時には,接触長さよりも長い方の材料は相手の物体の両端部の変形を
大きくするように作用する。これにともなって接触部分の両端における応力は,
中央部の応力よりも大きくなる。これがエッジロードであって,接触における負荷能力に
きわめて大きな影響を与える。

348 :名無しさん@3周年:2015/03/03(火) 06:23:04.32 ID:ZJdXeyCB.net
このエッジロ―ドを減少させたり除去したりすることは,2物体の形状をある程度
修正(両端部付近の直径をわずかに小さくする・・・クラウニング)すれば可能ではある。
しかし修正した形状においても,圧力面が正しい長方形になるのはただ一つの荷重における時
でしかない。それよりも小さい荷重では圧力分布は中央部で高くて両端部で低い形状となり,
またそれより大きい荷重では上述のエッジロードが発生する。さらにころ軸受では,
たとえ転動体荷重が一定でその大きさがわかっていたとしても,軌道輪やころの母線形状を
その荷重に合致させるように修正することは一般に不可能である。もちろん,このように
転動体荷重がわかるということも,まず実際にはあり得ない。したがって接触2物体の形状を
修正することは,ある特定の荷重に対してだけ良い結果が得られ,その他の荷重では
そのようにならないことを前提とした妥協をいつも考えなければならない。

本報告では,前報と同じ記号を使用し,また式についても前報から継続した番号を使っているが,
前報の式,図および表をさしかえて使うものについては,番号の後にaを付けて示した。
また本報の中の寿命試験においては,試験結果からメジアン寿命(50%保証寿命)を求め,
その値の1/5.4をとって示した。この値は寿命分布が正常な場合の定格寿命(90%保証寿命)に
相当する。

なお本報における材料の研究についてはBertil Snare氏の協力を得た。

G.Lundberg
A.Palmgren

以上

349 :名無しさん@3周年:2015/03/23(月) 21:24:08.01 ID:SNhlVyDKz
このようなころがり軸受理論は,もともとSKF社からではないですか?!

350 :名無しさん@3周年:2015/04/01(水) 19:05:05.09 ID:DO1RvFPg.net
ティルティングパットの仕組みや機構などが分かり易く説明されてるサイトはありませんか?

213 KB
新着レスの表示

掲示板に戻る 全部 前100 次100 最新50
名前: E-mail (省略可) :

read.cgi ver 2014.07.20.01.SC 2014/07/20 D ★